Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (199)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37843266

RESUMO

Lung transplantation is often the only option for patients in the later stages of severe lung disease, but this is limited both due to the supply of suitable donor lungs and both acute and chronic rejection after transplantation. Ascertaining novel bioengineering approaches for the replacement of diseased lungs is imperative for improving patient survival and avoiding complications associated with current transplantation methodologies. An alternative approach involves the use of decellularized whole lungs lacking cellular constituents that are typically the cause of acute and chronic rejection. Since the lung is such a complex organ, it is of interest to examine the extracellular matrix components of specific regions, including the vasculature, airways, and alveolar tissue. The purpose of this approach is to establish simple and reproducible methods by which researchers may dissect and isolate region-specific tissue from fully decellularized lungs. The current protocol has been devised for pig and human lungs, but may be applied to other species as well. For this protocol, four regions of the tissue were specified: airway, vasculature, alveoli, and bulk lung tissue. This procedure allows for the procurement of samples of tissue that more accurately represent the contents of the decellularized lung tissue as opposed to traditional bulk analysis methods.


Assuntos
Pneumopatias , Tecidos Suporte , Humanos , Animais , Suínos , Pulmão/cirurgia , Pulmão/irrigação sanguínea , Bioengenharia/métodos , Engenharia Biomédica , Engenharia Tecidual/métodos , Matriz Extracelular
2.
J Immunol ; 211(10): 1526-1539, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819784

RESUMO

Chronic infection with the gammaherpesvirus EBV is a risk factor for several autoimmune diseases, and poor control of EBV viral load and enhanced anti-EBV responses elevate this risk further. However, the role of host genetic variation in the regulation of immune responses to chronic gammaherpesvirus infection and control of viral replication remains unclear. To address this question, we infected C57BL/6J (B6) and genetically divergent wild-derived inbred PWD/PhJ (PWD) mice with murine gammaherpesvirus-68 (MHV-68), a gammaherpesvirus similar to EBV, and determined the effect of latent gammaherpesvirus infection on the CD4 T cell transcriptome. Chronic MHV-68 infection of B6 mice resulted in a dramatic upregulation of genes characteristic of a cytotoxic Th cell phenotype, including Gzmb, Cx3cr1, Klrg1, and Nkg7, a response that was highly muted in PWD mice. Flow cytometric analyses revealed an expansion of CX3CR1+KLRG1+ cytotoxic Th cell-like cells in B6 but not PWD mice. Analysis of MHV-68 replication demonstrated that in spite of muted adaptive responses, PWD mice had superior control of viral load in lymphoid tissue, despite an absence of a defect in MHV-68 in vitro replication in PWD macrophages. Depletion of NK cells in PWD mice, but not B6 mice, resulted in elevated viral load, suggesting genotype-dependent NK cell involvement in MHV-68 control. Taken together, our findings demonstrate that host genetic variation can regulate control of gammaherpesvirus replication through disparate immunological mechanisms, resulting in divergent long-term immunological sequelae during chronic infection.


Assuntos
Gammaherpesvirinae , Infecções por Herpesviridae , Animais , Camundongos , Infecção Persistente , Carga Viral , Camundongos Endogâmicos C57BL , Gammaherpesvirinae/genética , Imunidade , Variação Genética , Proteínas de Membrana/genética
3.
Acta Biomater ; 168: 388-399, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37433361

RESUMO

Decellularized lung scaffolds and hydrogels are increasingly being utilized in ex vivo lung bioengineering. However, the lung is a regionally heterogenous organ with proximal and distal airway and vascular compartments of different structures and functions that may be altered as part of disease pathogenesis. We previously described decellularized normal whole human lung extracellular matrix (ECM) glycosaminoglycan (GAG) composition and functional ability to bind matrix-associated growth factors. We now determine differential GAG composition and function in airway, vascular, and alveolar-enriched regions of decellularized lungs obtained from normal, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) patients. Significant differences were observed in heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA) content and CS/HS compositions between both different lung regions and between normal and diseased lungs. Surface plasmon resonance demonstrated that HS and CS from decellularized normal and COPD lungs similarly bound fibroblast growth factor 2, but that binding was decreased in decellularized IPF lungs. Binding of transforming growth factor ß to CS was similar in all three groups but binding to HS was decreased in IPF compared to normal and COPD lungs. In addition, cytokines dissociate faster from the IPF GAGs than their counterparts. The differences in cytokine binding features of IPF GAGs may result from different disaccharide compositions. The purified HS from IPF lung is less sulfated than that from other lungs, and the CS from IPF contains more 6-O-sulfated disaccharide. These observations provide further information for understanding functional roles of ECM GAGs in lung function and disease. STATEMENT OF SIGNIFICANCE: Lung transplantation remains limited due to donor organ availability and need for life-long immunosuppressive medication. One solution, the ex vivo bioengineering of lungs via de- and recellularization has not yet led to a fully functional organ. Notably, the role of glycosaminoglycans (GAGs) remaining in decellularized lung scaffolds is poorly understood despite their important effects on cell behaviors. We have previously investigated residual GAG content of native and decellularized lungs and their respective functionality, and role during scaffold recellularization. We now present a detailed characterization of GAG and GAG chain content and function in different anatomical regions of normal diseased human lungs. These are novel and important observations that further expand knowledge about functional GAG roles in lung biology and disease.


Assuntos
Glicosaminoglicanos , Doença Pulmonar Obstrutiva Crônica , Humanos , Glicosaminoglicanos/metabolismo , Pulmão/patologia , Sulfatos de Condroitina , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Matriz Extracelular/metabolismo , Dissacarídeos/análise , Dissacarídeos/metabolismo
4.
Sci Rep ; 13(1): 12057, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491483

RESUMO

Alveolar type 2 epithelial cells (AT2s) derived from human induced pluripotent stem cells (iAT2s) have rapidly contributed to our understanding of AT2 function and disease. However, while iAT2s are primarily cultured in three-dimensional (3D) Matrigel, a matrix derived from cancerous mouse tissue, it is unclear how a physiologically relevant matrix will impact iAT2s phenotype. As extracellular matrix (ECM) is recognized as a vital component in directing cellular function and differentiation, we sought to derive hydrogels from decellularized human lung alveolar-enriched ECM (aECM) to provide an ex vivo model to characterize the role of physiologically relevant ECM on iAT2 phenotype. We demonstrate aECM hydrogels retain critical in situ ECM components, including structural and basement membrane proteins. While aECM hydrogels facilitate iAT2 proliferation and alveolosphere formation, a subset of iAT2s rapidly change morphology to thin and elongated ring-like cells. This morphological change correlates with upregulation of recently described iAT2-derived transitional cell state genetic markers. As such, we demonstrate a potentially underappreciated role of physiologically relevant aECM in iAT2 differentiation.


Assuntos
Hidrogéis , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Hidrogéis/química , Matriz Extracelular/metabolismo , Células Epiteliais Alveolares , Diferenciação Celular/fisiologia , Células Epiteliais
5.
Biomaterials ; 293: 121960, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580718

RESUMO

Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), are characterized by regional extracellular matrix (ECM) remodeling which contributes to disease progression. Previous proteomic studies on whole decellularized lungs have provided detailed characterization on the impact of COPD and IPF on total lung ECM composition. However, such studies are unable to determine the differences in ECM composition between individual anatomical regions of the lung. Here, we employ a post-decellularization dissection method to compare the ECM composition of whole decellularized lungs (wECM) and specific anatomical lung regions, including alveolar-enriched ECM (aECM), airway ECM (airECM), and vasculature ECM (vECM), between non-diseased (ND), COPD, and IPF human lungs. We demonstrate, using mass spectrometry, that individual regions possess a unique ECM signature characterized primarily by differences in collagen composition and basement-membrane associated proteins, including ECM glycoproteins. We further demonstrate that both COPD and IPF lead to alterations in lung ECM composition in a region-specific manner, including enrichment of type-III collagen and fibulin in IPF aECM. Taken together, this study provides methodology for future studies, including isolation of region-specific lung biomaterials, as well as a dataset that may be applied for the identification of novel ECM targets for therapeutics.


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Fibrose Pulmonar Idiopática , Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Colágeno/análise , Matriz Extracelular/química , Proteínas da Matriz Extracelular/análise , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/química , Proteômica/métodos , Doença Pulmonar Obstrutiva Crônica/metabolismo
6.
PLoS One ; 17(9): e0273050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112601

RESUMO

Infection with the respiratory pathogen influenza A virus (IAV) causes significant morbidity and mortality each year. While host genotype is thought to contribute to severity of disease, naturally occurring genetic determinants remain mostly unknown. Moreover, more severe disease is seen in women compared with men, but genetic mechanisms underlying this sex difference remain obscure. Here, using IAV infection in a mouse model of naturally selected genetic diversity, namely C57BL6/J (B6) mice carrying chromosomes (Chr) derived from the wild-derived and genetically divergent PWD/PhJ (PWD) mouse strain (B6.ChrPWD consomic mice), we examined the effects of genotype and sex on severity of IAV-induced disease. Compared with B6, parental PWD mice were completely protected from IAV-induced disease, a phenotype that was fully recapitulated in the B6.Chr16PWD strain carrying the PWD-derived allele of Mx1. In contrast, several other consomic strains, including B6.Chr3PWD and B6.Chr5PWD, demonstrated greatly increased susceptibility. Notably, B6.Chr5PWD and B6.ChrX.3PWD strains, the latter carrying the distal one-third of ChrX from PWD, exhibited increased morbidity and mortality specifically in male but not female mice. Follow up analyses focused on B6 and B6.ChrX.3PWD strains demonstrated moderately elevated viral load in B6.ChrX3PWD male, but not female mice. Transcriptional profiling demonstrated genotype- and sex-specific gene expression profiles in the infected lung, with male B6.ChrX.3 mice exhibiting the most significant changes, including upregulation of a proinflammatory gene expression program associated with myeloid cells, and altered sex-biased expression of several X-linked genes that represent positional candidates, including Tlr13 and Slc25a53. Taken together, our results identify novel loci on autosomes and the X chromosome regulating IAV susceptibility and demonstrate that sex differences in IAV susceptibility are genotype-dependent, suggesting that future genetic association studies need to consider sex as a covariate.


Assuntos
Vírus da Influenza A , Influenza Humana , Caracteres Sexuais , Animais , Feminino , Genótipo , Humanos , Influenza Humana/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cromossomo X
7.
Front Immunol ; 9: 1622, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065723

RESUMO

Vitamin D3 (VitD) insufficiency is postulated to represent a major modifiable risk factor for multiple sclerosis (MS). While low VitD levels strongly correlate with higher MS risk in white populations, this is not the case for other ethnic groups, suggesting the existence of a genetic component. Moreover, VitD supplementation studies in MS so far have not shown a consistent benefit. We sought to determine whether direct manipulation of VitD levels modulates central nervous system autoimmune disease in a sex-by-genotype-dependent manner. To this end, we used a dietary model of VitD modulation, together with the autoimmune animal model of MS, experimental autoimmune encephalomyelitis (EAE). To assess the impact of genotype-by-VitD interactions on EAE susceptibility, we utilized a chromosome substitution (consomic) mouse model that incorporates the genetic diversity of wild-derived PWD/PhJ mice. High VitD was protective in EAE in female, but not male C57BL/6J (B6) mice, and had no effect in EAE-resistant PWD/PhJ (PWD) mice. EAE protection was accompanied by sex- and genotype-specific suppression of proinflammatory transcriptional programs in CD4 T effector cells, but not CD4 regulatory T cells. Decreased expression of proinflammatory genes was observed with high VitD in female CD4 T effector cells, specifically implicating a key role of MHC class II genes, interferon gamma, and Th1 cell-mediated neuroinflammation. In consomic strains, effects of VitD on EAE were also sex- and genotype dependent, whereby high VitD: (1) was protective, (2) had no effect, and (3) unexpectedly had disease-exacerbating effects. Systemic levels of 25(OH)D differed across consomic strains, with higher levels associated with EAE protection only in females. Analysis of expression of key known VitD metabolism genes between B6 and PWD mice revealed that their expression is genetically determined and sex specific and implicated Cyp27b1 and Vdr as candidate genes responsible for differential EAE responses to VitD modulation. Taken together, our results support the observation that the association between VitD status and MS susceptibility is genotype dependent and suggest that the outcome of VitD status in MS is determined by gene-by-sex interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...